Serveur d'exploration sur la maladie de Parkinson

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ordered‐subset analysis (OSA) for family‐based association mapping of complex traits

Identifieur interne : 002605 ( Main/Corpus ); précédent : 002604; suivant : 002606

Ordered‐subset analysis (OSA) for family‐based association mapping of complex traits

Auteurs : Ren-Hua Chung ; Silke Schmidt ; Eden R. Martin ; Elizabeth R. Hauser

Source :

RBID : ISTEX:3D20476BBA5B3223966E298661D4E9E274FA55FC

English descriptors

Abstract

Association analysis provides a powerful tool for complex disease gene mapping. However, in the presence of genetic heterogeneity, the power for association analysis can be low since only a fraction of the collected families may carry a specific disease susceptibility allele. Ordered‐subset analysis (OSA) is a linkage test that can be powerful in the presence of genetic heterogeneity. OSA uses trait‐related covariates to identify a subset of families that provide the most evidence for linkage. A similar strategy applied to genetic association analysis would likely result in increased power to detect association. Association in the presence of linkage (APL) is a family‐based association test (FBAT) for nuclear families with multiple affected siblings that properly infers missing parental genotypes when linkage is present. We propose here APL‐OSA, which applies the OSA method to the APL statistic to identify a subset of families that provide the most evidence for association. A permutation procedure is used to approximate the distribution of the APL‐OSA statistic under the null hypothesis that there is no relationship between the family‐specific covariate and the family‐specific evidence for allelic association. We performed a comprehensive simulation study to verify that APL‐OSA has the correct type I error rate under the null hypothesis. This simulation study also showed that APL‐OSA can increase power relative to other commonly used association tests (APL, FBAT and FBAT with covariate adjustment) in the presence of genetic heterogeneity. Finally, we applied APL‐OSA to a family study of age‐related macular degeneration, where cigarette smoking was used as a covariate. Genet. Epidemiol. 2008. © 2008 Wiley‐Liss, Inc.

Url:
DOI: 10.1002/gepi.20340

Links to Exploration step

ISTEX:3D20476BBA5B3223966E298661D4E9E274FA55FC

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ordered‐subset analysis (OSA) for family‐based association mapping of complex traits</title>
<author>
<name sortKey="Chung, Ren Ua" sort="Chung, Ren Ua" uniqKey="Chung R" first="Ren-Hua" last="Chung">Ren-Hua Chung</name>
<affiliation>
<mods:affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schmidt, Silke" sort="Schmidt, Silke" uniqKey="Schmidt S" first="Silke" last="Schmidt">Silke Schmidt</name>
<affiliation>
<mods:affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martin, Eden R" sort="Martin, Eden R" uniqKey="Martin E" first="Eden R." last="Martin">Eden R. Martin</name>
<affiliation>
<mods:affiliation>Center for Genetic Epidemiology and Statistical Genetics, Miami Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hauser, Elizabeth R" sort="Hauser, Elizabeth R" uniqKey="Hauser E" first="Elizabeth R." last="Hauser">Elizabeth R. Hauser</name>
<affiliation>
<mods:affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:3D20476BBA5B3223966E298661D4E9E274FA55FC</idno>
<date when="2008" year="2008">2008</date>
<idno type="doi">10.1002/gepi.20340</idno>
<idno type="url">https://api.istex.fr/document/3D20476BBA5B3223966E298661D4E9E274FA55FC/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">002605</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Ordered‐subset analysis (OSA) for family‐based association mapping of complex traits</title>
<author>
<name sortKey="Chung, Ren Ua" sort="Chung, Ren Ua" uniqKey="Chung R" first="Ren-Hua" last="Chung">Ren-Hua Chung</name>
<affiliation>
<mods:affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schmidt, Silke" sort="Schmidt, Silke" uniqKey="Schmidt S" first="Silke" last="Schmidt">Silke Schmidt</name>
<affiliation>
<mods:affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martin, Eden R" sort="Martin, Eden R" uniqKey="Martin E" first="Eden R." last="Martin">Eden R. Martin</name>
<affiliation>
<mods:affiliation>Center for Genetic Epidemiology and Statistical Genetics, Miami Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hauser, Elizabeth R" sort="Hauser, Elizabeth R" uniqKey="Hauser E" first="Elizabeth R." last="Hauser">Elizabeth R. Hauser</name>
<affiliation>
<mods:affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Genetic Epidemiology</title>
<title level="j" type="sub">The Official Publication of the International Genetic Epidemiology Society</title>
<title level="j" type="abbrev">Genet. Epidemiol.</title>
<idno type="ISSN">0741-0395</idno>
<idno type="eISSN">1098-2272</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2008-11">2008-11</date>
<biblScope unit="volume">32</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="627">627</biblScope>
<biblScope unit="page" to="637">637</biblScope>
</imprint>
<idno type="ISSN">0741-0395</idno>
</series>
<idno type="istex">3D20476BBA5B3223966E298661D4E9E274FA55FC</idno>
<idno type="DOI">10.1002/gepi.20340</idno>
<idno type="ArticleID">GEPI20340</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0741-0395</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>covariate</term>
<term>family‐based association analysis</term>
<term>genetic heterogeneity</term>
<term>linkage</term>
<term>ordered‐subset analysis</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Association analysis provides a powerful tool for complex disease gene mapping. However, in the presence of genetic heterogeneity, the power for association analysis can be low since only a fraction of the collected families may carry a specific disease susceptibility allele. Ordered‐subset analysis (OSA) is a linkage test that can be powerful in the presence of genetic heterogeneity. OSA uses trait‐related covariates to identify a subset of families that provide the most evidence for linkage. A similar strategy applied to genetic association analysis would likely result in increased power to detect association. Association in the presence of linkage (APL) is a family‐based association test (FBAT) for nuclear families with multiple affected siblings that properly infers missing parental genotypes when linkage is present. We propose here APL‐OSA, which applies the OSA method to the APL statistic to identify a subset of families that provide the most evidence for association. A permutation procedure is used to approximate the distribution of the APL‐OSA statistic under the null hypothesis that there is no relationship between the family‐specific covariate and the family‐specific evidence for allelic association. We performed a comprehensive simulation study to verify that APL‐OSA has the correct type I error rate under the null hypothesis. This simulation study also showed that APL‐OSA can increase power relative to other commonly used association tests (APL, FBAT and FBAT with covariate adjustment) in the presence of genetic heterogeneity. Finally, we applied APL‐OSA to a family study of age‐related macular degeneration, where cigarette smoking was used as a covariate. Genet. Epidemiol. 2008. © 2008 Wiley‐Liss, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Ren‐Hua Chung</name>
<affiliations>
<json:string>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</json:string>
</affiliations>
</json:item>
<json:item>
<name>Silke Schmidt</name>
<affiliations>
<json:string>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</json:string>
</affiliations>
</json:item>
<json:item>
<name>Eden R. Martin</name>
<affiliations>
<json:string>Center for Genetic Epidemiology and Statistical Genetics, Miami Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida</json:string>
</affiliations>
</json:item>
<json:item>
<name>Elizabeth R. Hauser</name>
<affiliations>
<json:string>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>family‐based association analysis</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>linkage</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ordered‐subset analysis</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>covariate</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>genetic heterogeneity</value>
</json:item>
</subject>
<articleId>
<json:string>GEPI20340</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<abstract>Association analysis provides a powerful tool for complex disease gene mapping. However, in the presence of genetic heterogeneity, the power for association analysis can be low since only a fraction of the collected families may carry a specific disease susceptibility allele. Ordered‐subset analysis (OSA) is a linkage test that can be powerful in the presence of genetic heterogeneity. OSA uses trait‐related covariates to identify a subset of families that provide the most evidence for linkage. A similar strategy applied to genetic association analysis would likely result in increased power to detect association. Association in the presence of linkage (APL) is a family‐based association test (FBAT) for nuclear families with multiple affected siblings that properly infers missing parental genotypes when linkage is present. We propose here APL‐OSA, which applies the OSA method to the APL statistic to identify a subset of families that provide the most evidence for association. A permutation procedure is used to approximate the distribution of the APL‐OSA statistic under the null hypothesis that there is no relationship between the family‐specific covariate and the family‐specific evidence for allelic association. We performed a comprehensive simulation study to verify that APL‐OSA has the correct type I error rate under the null hypothesis. This simulation study also showed that APL‐OSA can increase power relative to other commonly used association tests (APL, FBAT and FBAT with covariate adjustment) in the presence of genetic heterogeneity. Finally, we applied APL‐OSA to a family study of age‐related macular degeneration, where cigarette smoking was used as a covariate. Genet. Epidemiol. 2008. © 2008 Wiley‐Liss, Inc.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595.276 x 790.866 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>5</keywordCount>
<abstractCharCount>1744</abstractCharCount>
<pdfWordCount>7894</pdfWordCount>
<pdfCharCount>48830</pdfCharCount>
<pdfPageCount>11</pdfPageCount>
<abstractWordCount>259</abstractWordCount>
</qualityIndicators>
<title>Ordered‐subset analysis (OSA) for family‐based association mapping of complex traits</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>32</volume>
<publisherId>
<json:string>GEPI</json:string>
</publisherId>
<pages>
<total>12</total>
<last>637</last>
<first>627</first>
</pages>
<issn>
<json:string>0741-0395</json:string>
</issn>
<issue>7</issue>
<subject>
<json:item>
<value>Original Article</value>
</json:item>
</subject>
<genre>
<json:string>Journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1098-2272</json:string>
</eissn>
<title>Genetic Epidemiology</title>
<doi>
<json:string>10.1002/(ISSN)1098-2272</json:string>
</doi>
</host>
<publicationDate>2008</publicationDate>
<copyrightDate>2008</copyrightDate>
<doi>
<json:string>10.1002/gepi.20340</json:string>
</doi>
<id>3D20476BBA5B3223966E298661D4E9E274FA55FC</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/3D20476BBA5B3223966E298661D4E9E274FA55FC/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/3D20476BBA5B3223966E298661D4E9E274FA55FC/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/3D20476BBA5B3223966E298661D4E9E274FA55FC/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Ordered‐subset analysis (OSA) for family‐based association mapping of complex traits</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2008</date>
</publicationStmt>
<notesStmt>
<note>National Institutes of Health (NIMH) - No. R01 MH595228;</note>
<note>Neurosciences Education and Research Foundation</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Ordered‐subset analysis (OSA) for family‐based association mapping of complex traits</title>
<author>
<persName>
<forename type="first">Ren‐Hua</forename>
<surname>Chung</surname>
</persName>
<affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</affiliation>
</author>
<author>
<persName>
<forename type="first">Silke</forename>
<surname>Schmidt</surname>
</persName>
<affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</affiliation>
</author>
<author>
<persName>
<forename type="first">Eden R.</forename>
<surname>Martin</surname>
</persName>
<affiliation>Center for Genetic Epidemiology and Statistical Genetics, Miami Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida</affiliation>
</author>
<author>
<persName>
<forename type="first">Elizabeth R.</forename>
<surname>Hauser</surname>
</persName>
<note type="correspondence">
<p>Correspondence: Center for Human Genetics, Duke University Medical Center, Box 3445, Durham, NC 27710===</p>
</note>
<affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Genetic Epidemiology</title>
<title level="j" type="sub">The Official Publication of the International Genetic Epidemiology Society</title>
<title level="j" type="abbrev">Genet. Epidemiol.</title>
<idno type="pISSN">0741-0395</idno>
<idno type="eISSN">1098-2272</idno>
<idno type="DOI">10.1002/(ISSN)1098-2272</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2008-11"></date>
<biblScope unit="volume">32</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="627">627</biblScope>
<biblScope unit="page" to="637">637</biblScope>
</imprint>
</monogr>
<idno type="istex">3D20476BBA5B3223966E298661D4E9E274FA55FC</idno>
<idno type="DOI">10.1002/gepi.20340</idno>
<idno type="ArticleID">GEPI20340</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2008</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Association analysis provides a powerful tool for complex disease gene mapping. However, in the presence of genetic heterogeneity, the power for association analysis can be low since only a fraction of the collected families may carry a specific disease susceptibility allele. Ordered‐subset analysis (OSA) is a linkage test that can be powerful in the presence of genetic heterogeneity. OSA uses trait‐related covariates to identify a subset of families that provide the most evidence for linkage. A similar strategy applied to genetic association analysis would likely result in increased power to detect association. Association in the presence of linkage (APL) is a family‐based association test (FBAT) for nuclear families with multiple affected siblings that properly infers missing parental genotypes when linkage is present. We propose here APL‐OSA, which applies the OSA method to the APL statistic to identify a subset of families that provide the most evidence for association. A permutation procedure is used to approximate the distribution of the APL‐OSA statistic under the null hypothesis that there is no relationship between the family‐specific covariate and the family‐specific evidence for allelic association. We performed a comprehensive simulation study to verify that APL‐OSA has the correct type I error rate under the null hypothesis. This simulation study also showed that APL‐OSA can increase power relative to other commonly used association tests (APL, FBAT and FBAT with covariate adjustment) in the presence of genetic heterogeneity. Finally, we applied APL‐OSA to a family study of age‐related macular degeneration, where cigarette smoking was used as a covariate. Genet. Epidemiol. 2008. © 2008 Wiley‐Liss, Inc.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>family‐based association analysis</term>
</item>
<item>
<term>linkage</term>
</item>
<item>
<term>ordered‐subset analysis</term>
</item>
<item>
<term>covariate</term>
</item>
<item>
<term>genetic heterogeneity</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article category</head>
<item>
<term>Original Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2008-01-17">Received</change>
<change when="2008-03-16">Registration</change>
<change when="2008-11">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/3D20476BBA5B3223966E298661D4E9E274FA55FC/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1098-2272</doi>
<issn type="print">0741-0395</issn>
<issn type="electronic">1098-2272</issn>
<idGroup>
<id type="product" value="GEPI"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="GENETIC EPIDEMIOLOGY">Genetic Epidemiology</title>
<title type="subtitle">The Official Publication of the International Genetic Epidemiology Society</title>
<title type="short">Genet. Epidemiol.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="70">
<doi origin="wiley" registered="yes">10.1002/gepi.v32:7</doi>
<numberingGroup>
<numbering type="journalVolume" number="32">32</numbering>
<numbering type="journalIssue">7</numbering>
</numberingGroup>
<coverDate startDate="2008-11">November 2008</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="5" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/gepi.20340</doi>
<idGroup>
<id type="unit" value="GEPI20340"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="12"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Original Article</title>
<title type="tocHeading1">Original Articles</title>
</titleGroup>
<copyright ownership="publisher">© 2008 Wiley‐Liss, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2008-01-17"></event>
<event type="manuscriptAccepted" date="2008-03-16"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2008-05-12"></event>
<event type="firstOnline" date="2008-05-12"></event>
<event type="publishedOnlineFinalForm" date="2008-10-27"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-06"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-12"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-16"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">627</numbering>
<numbering type="pageLast">637</numbering>
</numberingGroup>
<correspondenceTo>Center for Human Genetics, Duke University Medical Center, Box 3445, Durham, NC 27710===</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:GEPI.GEPI20340.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="4"></count>
<count type="tableTotal" number="4"></count>
<count type="referenceTotal" number="39"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Ordered‐subset analysis (OSA) for family‐based association mapping of complex traits</title>
<title type="short" xml:lang="en">OSA for Family‐Based Association Mapping</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Ren‐Hua</givenNames>
<familyName>Chung</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Silke</givenNames>
<familyName>Schmidt</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Eden R.</givenNames>
<familyName>Martin</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Elizabeth R.</givenNames>
<familyName>Hauser</familyName>
</personName>
<contactDetails>
<email>Elizabeth.Hauser@duke.edu</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="US" type="organization">
<unparsedAffiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="US" type="organization">
<unparsedAffiliation>Center for Genetic Epidemiology and Statistical Genetics, Miami Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">family‐based association analysis</keyword>
<keyword xml:id="kwd2">linkage</keyword>
<keyword xml:id="kwd3">ordered‐subset analysis</keyword>
<keyword xml:id="kwd4">covariate</keyword>
<keyword xml:id="kwd5">genetic heterogeneity</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>National Institutes of Health (NIMH)</fundingAgency>
<fundingNumber>R01 MH595228</fundingNumber>
</fundingInfo>
<fundingInfo>
<fundingAgency>Neurosciences Education and Research Foundation</fundingAgency>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Association analysis provides a powerful tool for complex disease gene mapping. However, in the presence of genetic heterogeneity, the power for association analysis can be low since only a fraction of the collected families may carry a specific disease susceptibility allele. Ordered‐subset analysis (OSA) is a linkage test that can be powerful in the presence of genetic heterogeneity. OSA uses trait‐related covariates to identify a subset of families that provide the most evidence for linkage. A similar strategy applied to genetic association analysis would likely result in increased power to detect association. Association in the presence of linkage (APL) is a family‐based association test (FBAT) for nuclear families with multiple affected siblings that properly infers missing parental genotypes when linkage is present. We propose here APL‐OSA, which applies the OSA method to the APL statistic to identify a subset of families that provide the most evidence for association. A permutation procedure is used to approximate the distribution of the APL‐OSA statistic under the null hypothesis that there is no relationship between the family‐specific covariate and the family‐specific evidence for allelic association. We performed a comprehensive simulation study to verify that APL‐OSA has the correct type I error rate under the null hypothesis. This simulation study also showed that APL‐OSA can increase power relative to other commonly used association tests (APL, FBAT and FBAT with covariate adjustment) in the presence of genetic heterogeneity. Finally, we applied APL‐OSA to a family study of age‐related macular degeneration, where cigarette smoking was used as a covariate.
<i>Genet. Epidemiol</i>
. 2008. © 2008 Wiley‐Liss, Inc.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Ordered‐subset analysis (OSA) for family‐based association mapping of complex traits</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>OSA for Family‐Based Association Mapping</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Ordered‐subset analysis (OSA) for family‐based association mapping of complex traits</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ren‐Hua</namePart>
<namePart type="family">Chung</namePart>
<affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Silke</namePart>
<namePart type="family">Schmidt</namePart>
<affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eden R.</namePart>
<namePart type="family">Martin</namePart>
<affiliation>Center for Genetic Epidemiology and Statistical Genetics, Miami Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elizabeth R.</namePart>
<namePart type="family">Hauser</namePart>
<affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</affiliation>
<description>Correspondence: Center for Human Genetics, Duke University Medical Center, Box 3445, Durham, NC 27710===</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2008-11</dateIssued>
<dateCaptured encoding="w3cdtf">2008-01-17</dateCaptured>
<dateValid encoding="w3cdtf">2008-03-16</dateValid>
<copyrightDate encoding="w3cdtf">2008</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">4</extent>
<extent unit="tables">4</extent>
<extent unit="references">39</extent>
</physicalDescription>
<abstract lang="en">Association analysis provides a powerful tool for complex disease gene mapping. However, in the presence of genetic heterogeneity, the power for association analysis can be low since only a fraction of the collected families may carry a specific disease susceptibility allele. Ordered‐subset analysis (OSA) is a linkage test that can be powerful in the presence of genetic heterogeneity. OSA uses trait‐related covariates to identify a subset of families that provide the most evidence for linkage. A similar strategy applied to genetic association analysis would likely result in increased power to detect association. Association in the presence of linkage (APL) is a family‐based association test (FBAT) for nuclear families with multiple affected siblings that properly infers missing parental genotypes when linkage is present. We propose here APL‐OSA, which applies the OSA method to the APL statistic to identify a subset of families that provide the most evidence for association. A permutation procedure is used to approximate the distribution of the APL‐OSA statistic under the null hypothesis that there is no relationship between the family‐specific covariate and the family‐specific evidence for allelic association. We performed a comprehensive simulation study to verify that APL‐OSA has the correct type I error rate under the null hypothesis. This simulation study also showed that APL‐OSA can increase power relative to other commonly used association tests (APL, FBAT and FBAT with covariate adjustment) in the presence of genetic heterogeneity. Finally, we applied APL‐OSA to a family study of age‐related macular degeneration, where cigarette smoking was used as a covariate. Genet. Epidemiol. 2008. © 2008 Wiley‐Liss, Inc.</abstract>
<note type="funding">National Institutes of Health (NIMH) - No. R01 MH595228; </note>
<note type="funding">Neurosciences Education and Research Foundation</note>
<subject lang="en">
<genre>Keywords</genre>
<topic>family‐based association analysis</topic>
<topic>linkage</topic>
<topic>ordered‐subset analysis</topic>
<topic>covariate</topic>
<topic>genetic heterogeneity</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Genetic Epidemiology</title>
<subTitle>The Official Publication of the International Genetic Epidemiology Society</subTitle>
</titleInfo>
<titleInfo type="abbreviated">
<title>Genet. Epidemiol.</title>
</titleInfo>
<genre type="Journal">journal</genre>
<subject>
<genre>article category</genre>
<topic>Original Article</topic>
</subject>
<identifier type="ISSN">0741-0395</identifier>
<identifier type="eISSN">1098-2272</identifier>
<identifier type="DOI">10.1002/(ISSN)1098-2272</identifier>
<identifier type="PublisherID">GEPI</identifier>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>32</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>627</start>
<end>637</end>
<total>12</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">3D20476BBA5B3223966E298661D4E9E274FA55FC</identifier>
<identifier type="DOI">10.1002/gepi.20340</identifier>
<identifier type="ArticleID">GEPI20340</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2008 Wiley‐Liss, Inc.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002605 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002605 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:3D20476BBA5B3223966E298661D4E9E274FA55FC
   |texte=   Ordered‐subset analysis (OSA) for family‐based association mapping of complex traits
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 18:06:51 2016. Site generation: Wed Mar 6 18:46:03 2024